

Matthew G. Bevin Governor

COMMONWEALTH OF KENTUCKY TRANSPORTATION CABINET Frankfort, Kentucky 40622 www.transportation.ky.gov/

Greg Thomas Secretary

November 23, 2016

CALL NO. 100 CONTRACT ID NO. 161266 ADDENDUM # 1

Subject: Morgan County, NHPP 0061 (068) Letting December 9, 2016

(1)Deleted - Pages 18-59 of 270
(2)Added - Notes - Pages 1-31 of 31

Proposal revisions are available at http://transportation.ky.gov/Construction-Procurement/.

If you have any questions, please contact us at 502-564-3500.

Sincerely,

Kachel Mille

Rachel Mills, P.E. Director Division of Construction Procurement

RM:ks Enclosures

An Equal Opportunity Employer M/F/D

MEMORANDUM

TO:	Patty Dunaway, PE State Highway Engineer, KYTC
THROUGH:	Paul Looney, PE Deputy State Highway Engineer for Project Development
FROM:	Marshall Carrier, PE Mountain Parkway Project Manager, KYTC S.H.E. Office
DATE:	October 28, 2016
SUBJECT:	Notice of Intent KYTC Item Nos. 10-126.70/.60/.50 Wolfe, Powell, Magoffin Counties Request for Combined Lettings

This is to announce that the Kentucky Transportation Cabinet (KYTC) intends to advertise and receive bids on December 9, 2016 for the reconstruction and widening to 4 lanes of three contiguous sections of the Mountain Parkway project as defined in the 2016 Highway Plan. These three contiguous projects will be advertised for individual bids. Additionally the three sections will be combined and advertised for a single combined bid. These four bid options are described as follows:

- Individual Item No. 10-126.70 Widen the Mountain Parkway to 4 Lanes from West of the KY 205 Interchange MP 56.6 to MP 59.3
- Individual Item No. 10-126.60 Widen the Mountain Parkway to 4 Lanes from MP 59.3 to East of KY 134 Bridge over Johnson Creek MP 62.5
- Individual Item No. 10-126.50 Widen the Mountain Parkway to 4 Lanes from East of KY 134 Bridge over Johnson Creek MP 62.5 to West of KY 3047 MP 65.0
- Combined Item No. 10-126.7, 10-126.6 and 126.5 Widen the Mountain Parkway to 4 Lanes from West of the KY 205 Interchange MP 56.6 to West of KY 3047 MP 65.0

A contractor may bid on any or all of the four options described above. The KYTC will then evaluate and advance contract(s) based on the following methodology:

- A) A single combined contract may be advanced, subject to the Awards Committee approval, if the single combined bid for all three sections is lower than the sum total of the three lowest individual bids
- B) Three individual contracts may be advanced, subject to the Awards Committee approval, if the sum total of the three individual bids is lower than the lowest single combined bid

The KYTC reserves the right to reject any bid in the scenarios described above.

Any questions on behalf of the contractors will be to the Division of Construction Procurement and all questions with corresponding responses will be posted.

This memo serves as request for approval from the State Highway Engineer's Office for an alternative letting method for three sub-projects within the Mountain Parkway Expansion Project as detailed above. If approval is granted, this memo will serve as notification to KYTC Construction Procurement to notify the public and make preliminary plans and other documents available for review in advance of the Notice to Contractors.

Cc: Patty Dunaway, KYTC Dana Robbins, FHWA

SPECIAL NOTE FOR USE OF MTV ON RAMPS

This project requires the use of Materials Transfer Vehicle. In accordance with Section A of 403.03.05, the MTV will be required on the ramps as well as mainline.

SPECIAL NOTE FOR EXCESS MATERIAL SITES

MORGAN COUNTY KY 9009 – MOUNTAIN PARKWAY WIDENING <u>ITEM NO. 10-126.60</u>

The construction activities of this project may result in a considerable amount of excess material. It is the contractor's responsibility to dispose of material in compliance with the United States Army Corps of Engineers (USACE) and the Kentucky Division of Water (DOW) rules and regulations pertaining to discharges into U.S. Waters. The Kentucky Transportation Cabinet (KYTC) has PENDING Section 404 & 401 permits for two excess material sites along the project corridor. The location of the excess material sites are identified in the accompanying map.

The contractor shall plan work in a manner that maximizes, to the most practical extent, the secured site first. Mitigation requirements resulting from the use of this excess material site will be in the form of in-lieu fees and will be paid by the KYTC prior to stream impacts occurring in the excess material site.

Erosion Control Devices and Seeding and Protection will be paid at the contract unit bid prices. Any other work associated with the excess material site will be incidental to the excavation cost including but not limited to the following items: Clearing and Grubbing, Temporary and Permanent Drainage Ditches and Structures.

It is the contractor's responsibility to review the Sections 401 & 404 permits and maintain compliance with the 401 & 404 permits throughout the duration of the project.

If the contractor chooses to use other excess material site(s) (rather than or in addition to) the KYTC's designated excess material site, or modify the designated excess material site, it will be the responsibility of the contractor to acquire the necessary permits and certifications. When applying for new or modified permits obtain approval from the KYTC and obtain the new permit in the Contractor's name from the USACE. No additional contract time will be allowed for this process.

Questions concerning any potential impacts to "Waters of the United States" should be brought to the attention of the appropriate District Office for the Corps of Engineers for determination, prior to disturbance. Any fees associated with obtaining new or modified permit approvals for the disposal of excess material from the USACE or other appropriate regulatory agencies are the responsibility of the contractor.

SPECIAL NOTE FOR MECHANICALLY STABILIZED EARTH RETAINING WALLS 10-126.60 MORGAN COUNTY KENTUCKY

1.0 DESCRIPTION

1.01 General and Experience Requirements:

The work under this section consists of designing, furnishing all materials and constructing Mechanically Stabilized Earth (MSE) retaining walls in accordance with the current Standard Specifications, this Special Note, in compliance with the lines and grades, dimensions and details shown on the project plans, and as directed by the Engineer.

The Contractor shall provide the MSE wall designer with a complete set of project plans and specifications and shall ensure that the wall design is compatible with all other project features that can impact the design and construction of the wall. The following terms are used in this specification for identification of various entities for which the Contractor shall be fully responsible:

Term	Entity	
Wall	The entity contractually retained by the contractor to provide materials and construction	
Manufacturer	services for an accepted MSE wall system as identified in Subsection 1.02.	
Wall	The entity contractually retained by the contractor to provide design of an accepted MSE wall	
Designer	system as identified in Subsection 1.02. The wall designer may be a representative of the wa	
e	manufacturer.	
Department /	Refers to the Kentucky Transportation Cabinet representative and/or a designated consultant	
Engineer	acting on behalf of KYTC.	

1.02 Accepted Systems:

The contractor shall provide an MSE Wall System that uses inextensible reinforcement and reinforced concrete panels or modular block and is one of the pre-approved systems below. <u>Inclusion of a system on this list does not relieve the Contractor and/or wall manufacturer of the contractual responsibility to satisfy all specific requirements herein and/or elsewhere in the contract documents.</u>

- Reinforced Earth (Reinforced Earth and Retained Earth)
- Hilfiker RSE
- Tricon Retained Soil Wall System
- ISOGRID Retaining Wall System
- Keystone Keysystem I
- Sine Wall MSE Panel System
- Sanders Pre-Cast Concrete Systems

Heights and lengths of earth retaining walls may vary from, but shall not be less than, those shown on the plans. The height and length to be used for any system shall be the minimum for that system that will effectively retain the earth behind the wall for the loading conditions and the contours, profile, or slope lines shown on the plans, or on the approved working drawings, and in accordance with all relevant internal and external stability design criteria, but not more than the pre-approved height for the particular MSE wall system selected.

1.03 MSE Wall Design Engineer:

Requirements for the Wall Designer's **MSE Wall Design Engineer** (who may be employed by the wall manufacturer or may be a consultant) are:

- Licensed Professional Engineer in the Commonwealth of Kentucky with a minimum of <u>5 years of</u> geotechnical and/or structural engineering experience.
- <u>Design and/or construction experience</u> on at least <u>five (5) MSE Walls</u> and a minimum of <u>50,000 square</u> <u>feet</u> of MSE Wall completed in the past five (5) years. Experience on a Reinforced Soil Slope may be substituted for one wall and up to 10,000 square feet.
- <u>Design experience</u> on at least <u>three (3) MSE Walls</u> and a minimum of <u>30,000 square feet</u> of MSE Wall on <u>highway infrastructure projects using the wall system that will be used on this project</u> completed in the past five (5) years.
- Completion of at least <u>15 Professional Development Hours</u> related to the design and/or construction of MSE Walls in the past five (5) years. This training may consist of attendance at a related short course, conference, seminar, workshop, or college course. Include documentation of this training with the submittal of the Design Engineer's credentials.

1.04 Wall Aesthetics:

Wall aesthetics shall be as specified in the project documents and request for proposals.

1.05 Certifications:

- (A) Certification of Design Parameters: See Subsection 2.01 herein specified.
- (B) Certification of Materials: See Subsections 3.04, 3.07, 3.09 & 3.10 herein specified.

1.5 QUALITY CONTROL:

The Department will perform construction inspection for the MSE Walls. However, the Contractor will be required to proactively implement the quality control procedures described herein. All costs associated with MSE Wall Quality Control will be incidental to the cost of the wall.

1.51 MSE Wall Quality Coordinator:

The Contractor shall designate a MSE Wall Quality Coordinator who shall:

- have a minimum of 3 years of construction field experience,
- be responsible for ensuring that the Contractor's quality control procedures are implemented including maintaining and submitting the checklists required in Section 1.57, (but may have other duties and/or responsibilities),
- have sufficient authority to carry out quality coordinator responsibilities, and
- be in the field during MSE Wall construction.

1.52 Mandatory MSE Wall Construction Training:

The MSE Wall Designer or an approved appointee will provide training related to proper MSE Wall construction for Contractor and Department personnel. This training should occur after the contractor has selected the MSE Wall system and the Department has confirmed that the MSE Wall Design Engineer and Manufacturer's Technical Field Representative meet the specified requirements. The training will be conducted in the District by the Manufacturer's Technical Field Representative or an outside consultant meeting the experience requirements of the Manufacturer's Technical Field Representative. The MSE

Wall Construction Training is expected to last one full day. Department personnel who will attend will include project inspection personnel and may include other district and central office personnel. The following contractor personnel are required to attend:

- On-Site Supervisor in charge of MSE Wall construction
- MSE Wall Quality Coordinator
- At least one office management level person representing the MSE Wall contractor
- If the MSE Wall is to be constructed by a subcontractor, at least one management level representative (field or office) of the Prime Contractor
- Manufacturer's Technical Field Representative referenced in Section 1.55 herein

At least one week before the training begins, the Contractor shall submit a list of specific persons who plan to attend.

1.53 Quality Control Plan:

The contractor shall submit a Quality Control Plan to the Engineer for review and acceptance which details measurements and documentation (including daily documentation checklists) that will be maintained by the Contractor during construction to assure consistency in meeting specification requirements. The Contractor shall coordinate the development of the Quality Control Plan with the MSE Wall System Manufacturer and the MSE Wall Design Engineer. The Quality Control Plan shall be submitted to the Engineer for acceptance <u>at least four weeks before beginning MSE wall construction</u>.

1.54 MSE Pre-Activity Meeting:

A pre-activity meeting will be scheduled and shall occur after the Quality Control Plan has been submitted and accepted by the Engineer and no later than two (2) weeks prior to commencement of MSE wall construction activity. As a minimum, this meeting shall be attended by representatives of the Contractor and MSE Wall Sub-Contractor (including wall construction crew chiefs and MSE Wall Quality Coordinator), MSE Wall Manufacturer's Technical Field Representative, Department District personnel as designated by the Branch Manager for Project Delivery and Preservation, Central Office Construction, and Geotechnical Branch. No wall construction activity shall be performed until the contractor's final submittals have been approved as having satisfactorily resolved all review comments and the pre-activity meeting has been held.

1.55 Manufacturer's Technical Field Representative:

The MSE Wall System Manufacturer shall provide a technical field representative to provide assistance to the MSE Wall Contractor. The requirements for the **Manufacturer's Technical Field Representative** are:

- At minimum, an associate's or bachelor's degree with a major in a technical or scientific field such as engineering, engineering or construction technology, geology, physics, mathematics, etc.
- A minimum of five (5) years of technical experience related to engineering and/or construction.
- <u>Construction experience</u> on at least <u>five (5) MSE Walls</u> and a minimum of <u>50,000 square feet</u> of MSE Wall completed in the past five (5) years. Experience on a Reinforced Soil Slope may be substituted for one wall and up to 10,000 square feet.
- <u>Construction experience</u> on at least <u>three (3) MSE Walls</u> and a minimum of <u>30,000 square feet</u> of MSE Wall on <u>highway infrastructure projects using the wall system that will be used on this project</u> completed in the past five (5) years.

• Completion of at least ten (10) Professional Development Hours related to the design and/or construction of MSE Walls in the past five (5) years. This training may consist of attendance at a related short course, conference, seminar, workshop, or college course. Include documentation of this training with the submittal of the Technical Field Representative's credentials.

<u>At least four weeks before beginning MSE wall construction, the Contractor shall submit documentation</u> that the Technical Field Representative meets the above requirements.

The minimum required duties of the Manufacturer's Technical Field Representative are:

- Participate in the mandatory training referenced in Section 1.52 herein.
- Participate in the preparation of the Quality Control Plan referenced in Section 1.53 herein.
- Attend the MSE Pre-Activity Meeting referenced in Section 1.54 herein.
- Ensure that the contractor obtains all "Certificates of Analysis" required in Section 3.0 (Materials Requirements) of this Special Note.
- Review all "Certificates of Analysis" and supporting documentation and provide written documentation to the Contractor and Engineer that the reviews have been completed and that all materials meet the specified requirements.
- Review all Supervisor Checklists described in Section 1.57 herein.
- Be present at a minimum, <u>during construction of the initial 10-foot height of the full length of wall for</u> each wall system. Additionally the representative shall be present for the initial 10-foot height of the <u>full length of wall for each wall system as constructed by each additional contractor</u>, and as called upon thereafter by the Engineer, to assist the contractor and Engineer at no additional cost to the Agency.
- After each on-site visit, the Contractor is required to submit a letter to the Engineer written by the Manufacturer's Technical Field Representative documenting the observations of each visit with documentation that the MSE Wall Design Engineer has reviewed the letter.
- The manufacturer's technical field representative may recommend field changes subject to the approval of the MSE Wall Design Engineer and the Department. Any such changes shall be documented in writing within <u>24 hours</u> of the approved changes. This written document shall be sealed by the MSE Wall Design Engineer prior to implementation of the changes.
- The Department reserves the right to discuss matters pertaining to this project directly with the technical field representative and to require the Contractor to call the technical field representative to the site for assistance at no additional cost to the Department if, in the opinion of the Engineer, the Contractor is not satisfactorily complying with the plans and specifications.

1.56 Certificates of Analysis:

The Contractor will be responsible for performing and/or subcontracting all testing required to produce the Certificates of Analysis required in Section 3.0 (Materials Requirements) of this Special Note and for submitting the Certificates to the Engineer as required.

1.57 Checklists:

The Contractor's MSE Wall On-Site Supervisor and MSE Wall Quality Coordinator shall complete and both sign the checklists below and submit them to the Engineer with copies to the Manufacturer's Technical Field Representative. The first three of these checklists can be found in FHWA Publication No. FHWA-NHI-10-025 "Design and Construction of Mechanically Stabilized Earth Walls and Reinforced Soil Slopes – Volume II", dated November 2009 (these tables are located in the appendix of this document).

Checklists		
Checklist Title	Submittal Requirements	
Checklist for Drawing Review (FHWA Table 11-2)	At least two weeks before starting MSE wall construction	
Checklist for Specification Compliance (FHWA Table 11-3)	Weekly	
Checklist for Construction (FHWA Table 11-5)	Weekly	
Quality Control Documentation (Quality Control Plan)	Daily	

1.58 MSE Wall Design Engineer:

The MSE Wall Design Engineer will be required to play an active role in the construction of the MSE walls and to be available to answer any questions that may arise during construction. Specifically, the MSE Wall Design Engineer is required to:

- Assist the Contractor and Manufacturer's Technical Field Representative with preparing the Quality Control Plan referenced in Section 1.53 herein.
- <u>Make at least one site visit</u> (4 hour minimum) while the Contractor is installing panels and reinforced fill material <u>during the first 10 working days of panel and reinforced fill installation</u>
- Review documentation of the Manufacturer's Technical Field Representative's site visits.

Additionally, the Design Engineer is required to attend the MSE Wall Construction Training and MSE Pre-Activity Meeting.

2.0 DESIGN SUBMITTALS (WORKING DRAWINGS AND DESIGN CALCULATIONS):

2.01 Submittals:

(A) General:

Design calculations and working drawings clearly showing conformance with the current Standard Specifications; AASHTO LRFD Bridge Design Specifications, current edition; KYTC Geotechnical Manual and project requirements shall be submitted for review. The format for the working drawings shall be in accordance with the Division of Structural Design's Guidance Manual. The first sheet shall be a title sheet.

Working drawings and design calculations shall be sealed by a licensed Professional Engineer in the Commonwealth of Kentucky. The MSE wall designer/supplier shall document on the working drawings all assumptions made in the design. The following statement shall be included near the P.E. seal on the first sheet of the working drawings: "All design assumptions are validated through notes or details on these drawings."

The Department assumes no responsibility for errors or omissions in the working drawings. Acceptance of the final working drawings submitted by the contractor shall not relieve the contractor of any responsibility under the contract for the successful completion of the work. Construction of the wall shall not commence until the contractor receives a written Notification to Begin MSE Wall Construction from the Engineer which will be issued once the complete wall package (drawings, calculations and

construction procedures) is accepted. Fabrication of any of the wall components before the written Notification to Begin MSE Wall Construction shall be at the sole risk of the Contractor.

A Certificate of Analysis for the Reinforced Fill Material (See Sections 3.05 and 3.07 herein) may be required prior to final acceptance of the MSE Wall design.

(B) Review Submittals:

All review submittals shall be submitted electronically in pdf format through the Contractor to the Project Resident Engineer. The Project Resident Engineer shall forward the plans, calculations, and working drawings to the Department. Submittals may be directly emailed to applicable reviewers with the permission of the Contractor and Resident Engineer provided that the Contractor and Resident Engineer receive email copies of the submittals. Contact the Department before beginning any work on the wall designs and construction plans.

The submittals required shall include working drawings, the Contractor's and MSE Wall supplier's construction procedures, supporting design calculations, verification of experience, and a transmittal letter. The transmittal letter shall only list the documents included in the submittal. No technical information shall be included in the transmittal letter.

Working drawings, design calculations and MSE supplier's construction procedures modified as necessary by the contractor and Wall Designer for site-specific conditions shall be submitted to the Engineer for review. The Engineer shall have 30 calendar days after receiving the six complete sets to finish a review. The revised package shall be resubmitted to the Engineer for review. The Engineer shall have 15 calendar days to complete this review. This review process shall be repeated until the entire submittal is accepted by the Engineer. Additional time required by the Department to review resubmissions shall not be cause for increasing the number of contract working days. The additional work required by the contractor to provide resubmissions shall be at no cost to the Department.

The Department reserves the right to require the contractor to verify that the Reinforced Wall Fill Material meets all applicable requirement before final acceptance of the design.

(C) Final Submittals:

All final wall tracings, with drawing number, shall be submitted on 3 mil, or thicker, 22" X 36" mylar film. The final mylar tracings of the accepted working drawings submitted to the Division of Structural Design shall be dated, sealed, and signed on Sheet 1 by the licensed Professional Engineer performing the work. Nine copies of the accepted working drawings shall be submitted.

2.02 Working Drawings:

The contractor shall submit complete working drawings and specifications for each installation of the system. Working drawings shall include the following at a minimum:

- (1) Layout of the wall including plan and elevation views;
- (2) All design parameters and assumptions including design life;
- (3) Existing ground elevations and utilities impacted by the wall, and those that should be field verified by the contractor, for each location;
- (4) Complete details of all elements and component parts required for the proper construction of the system at each location and any required accommodations for drainage systems, foundation subgrades or other facilities shown on the contract documents;
- (5) The working drawing submittal shall clearly detail any special design requirements, <u>if applicable</u>. These special design requirements may include, but are not limited to: structural frames to place

reinforcements around obstructions such as deep foundations and storm drain crossings, drainage systems, placement sequence of drainage and unit core fill with respect to reinforced (structure) fill behind a wall face using modular block facing units, guardrail post installation, scour protection, foundation subgrade modification, all corner details (acute, obtuse and 90 degrees), slip joints, joint details of MSE walls with other cast-in-place structures, wedges, shims and other devices such as clamps and bracing to establish and maintain vertical and horizontal wall facing alignments;

- (6) A complete listing of components and materials specifications; and
- (7) Other site-specific or project specific information required by the contract.

2.03 MSE Wall Design:

(A) General:

The working drawings shall be supplemented with all design calculations for the particular installation as required herein. Installations that deviate from the accepted design (by the Contractor's MSE Wall Design Engineer) shall be accompanied by supporting stability (internal; external; and global/overall and/or compound if required in the project documents) calculations of the proposed structure as well as supporting calculations for all special details not contained in the accepted design. The MSE wall designer/supplier shall note all deviations of the proposed wall design from the accepted design.

The proposed design shall satisfy the design parameters shown on the project plans and listed in this Special Note, and comply with the design requirements of AASHTO LRFD Bridge Design Specifications, current edition and the KYTC Geotechnical and Bridge Design Guidance Manuals. Unless otherwise specified in the contract, all structures shall be designed to conform to the requirements shown in Table 1 and other requirements specified herein.

If the designer uses software other than MSEW, a minimum of one analysis corresponding to the most critical design case for each MSE wall shall be submitted using MSEW software. Sample hand calculations containing a sketch, all external analysis for the design case, and internal analyses for a minimum of three reinforcement levels shall also be submitted for the most critical design case for each MSE wall.

Table 1 - MSE Wall Design Criteria and Parameters		
Design Life	100 years	
Friction angle of granular retained backfill (where required)	36°	
Friction angle of MSE reinforced fill material	34° *	
Total Unit weight of granular retained backfill	120 pcf	
Total Unit weight of MSE reinforced fill material	120 pcf **	
Minimum reinforcement length	Greater of 8 ft. or 0.7 times effective height	
Friction angle for sliding calculation (through reinforced fill)	34° *	
Resistance factor for sliding	As specified in AASHTO LRFD Bridge Design Specifications	
Wall Eccentricity	Verify as specified in AASHTO LRFD Bridge Design Specifications, current edition	
Bearing Resistance Factor	As specified in AASHTO LRFD Bridge Design Specifications	
Surcharge Loading (due to vehicle loading behind the walls)	As specified in AASHTO LRFD Bridge Design Specifications	
Minimum top of leveling pad embedment	2 ft. below final grade or as specified by the Geotechnical Report	

* For internally reinforced fill material, a minimum friction angle of 34 degrees shall be substantiated by laboratory tests discussed in Subsection 3.05(D). If the measured friction angle in laboratory tests as per Subsection 3.05(D) is greater than 34 degrees and the fill material is well-graded according to the Unified Soil Classification System (USCS), then the design friction angle may be increased up to a maximum of 38 degrees. See Table 5.

** The Total Unit Weight of the reinforced fill material shall be substantiated by laboratory tests discussed in Subsection 3.05(F). If the Total Unit Weight (i.e. SSD Bulk Density) obtained from laboratory tests as per Subsection 3.05(F) varies by more than +/- 5.0 pcf from the design value, then the design must be adjusted accordingly or reinforced fill material falling within this range must be used. See Table 5.

"H" is the design height of the wall and is defined as the difference in elevation from the finished grade at the top of wall and the top of leveling pad. The length of reinforcement, "L", is measured from the backface of the wall facing unit. If applicable, the length of grid type reinforcement is measured from the backface of the wall to the last full transverse member. "H" is the effective height of the wall and is defined as: the design height "H" + (strap length "L" – distance from the wall face to the toe of slope) * tan (slope angle of backfill). In the case of horizontal backfill design height "H" equals effective height "H" ".The top of the leveling pad shall always be below the minimum embedment reference line as indicated on the plans for that location. If applicable, the total base length for modular block facing units, BT, as measured from the front face of the wall is the length L as defined above plus the width of the modular block unit (the horizontal dimension of the block unit measured perpendicular to the wall face).

(B) Subsurface Drainage Systems:

Walls shall be provided with subsurface drainage measures as shown on the project plans and specifications. As a minimum, an underdrain system shall be provided for leading subsurface and surface water away from the reinforced fill material and outside the limits of the wall. Geocomposite drains, if used for subsurface drainage, shall be in accordance with Section 845 of the current Standard Specifications.

(C) Obstructions in Reinforced Fill:

(1) General:

Where obstructions, such as deep foundations or storm drains crossings, are located in the reinforced fill material zone, cutting of reinforcements to avoid obstructions shall not be permitted. A minimum offset of one diameter but not less than <u>three (3) feet</u> shall be maintained between the face of any pipe crossings and the back face of retaining wall panels. A minimum clearance of <u>three (3) feet</u> shall be maintained between the face of any other obstruction and the back face of retaining wall panels.

(2) Horizontal Deflection of Reinforcements:

In the horizontal plane at a reinforcing level, a deviation up to fifteen (15) degrees from the normal to the face of the wall may be allowed for strip reinforcement and bolted connection. This deviation is herein referred to as the splay angle. Grid reinforcements may not be splayed, unless connection has been specifically fabricated to accommodate a splay and connection detail has been approved by the Department. If used, the splay in grid reinforcement is limited to fifteen (15) degrees. For obstructions that cannot be accommodated with splayed reinforcement, structural frames and connections shall be required, and shall be designed in accordance with the AASHTO LRFD Bridge Design Specifications, current edition. The structural frame design shall be such that bending moments are not generated in the fill reinforcement or the connection at the wall face. The design, along with supporting calculations, shall be included in the working drawings.

(3) Vertical Deflection of Reinforcements:

Vertical deflection of the reinforcement to avoid obstructions such as utilities along the wall face shall be limited to a maximum of 15 degrees from normal to face of wall. Bends in the reinforcement shall be smooth and gradual to ensure that galvanization remains intact.

(D) Hydrostatic Pressures:

As determined by the Designer and/or as noted on the plans, for walls potentially subject to inundation, such as those located adjacent to rivers, canals, detention basins or retention basins. Effective unit weights shall be used in the calculations for internal and external stability beginning at levels just below the equivalent surface of the pressure head line. Where the wall is influenced by water fluctuations, the wall shall be designed for rapid drawdown conditions which could result in differential hydrostatic pressure.

(E) Acute Angle Corners:

Wall corners with an included angle of less than 70 degrees shall be designed for bin-type lateral pressures for the extent of the wall where the full length of the reinforcement cannot be installed without encountering a wall face. Acute angle corner structures shall not be stand-alone separate structures.

Computations shall be provided that demonstrate deformation compatibility between the acute angle corner structure and the rest of the MSE wall. Full-height vertical slip joints shall be provided at the acute angle corner and after the last column of panels where full length of the reinforcements can be placed. The soil reinforcement attached to the slip joints shall be oriented perpendicular to the slip joint panels and shall be the full design length. Special connection and compaction details shall be provided on the working drawings.

(F) Spacing of Metallic Reinforcement for Flexible Face Wall Systems:

Permanent Flexible Face Wall Systems are not allowed.

(G) Fill Reinforcement for Modular Block Wall Systems:

The reinforcement lengths and percent coverage at a given reinforcement level shall be in accordance with the plans. All reinforcement shall be positively connected to the modular block facing units that is capable of resisting 100% of the maximum tension in the reinforcements at any level within the wall. Detailed documentation for connection strength shall be submitted as noted in Subsection 3.10. The vertical spacing of the reinforcement for walls with modular block facing units shall be as follows:

1. The first (bottom) layer of reinforcement shall be no further than 16 inches above the top of the leveling pad.

2. The last (top) layer of reinforcement shall be no further than 20 inches on the average below the top of the uppermost MBW unit.

3. The maximum vertical spacing between layers of adjacent reinforcement shall not exceed 32 inches. For walls deriving any part of their connection capacity by friction the maximum vertical spacing of the reinforcement should be limited to two times the block depth (front face to back face) to assure construction and long-term stability. The top row of reinforcement should be one-half the vertical spacing.

(H) Initial Batter of Wall:

The initial batter of the wall, both during construction and upon completion, shall be within the vertical and horizontal alignment tolerances included in this Special Note. The initial batter of the wall panels at the start of construction and the means and methods necessary to achieve the batter shall be provided on the working drawings. Subject to Engineer's approval, the initial batter of the wall panels may be modified at the start of construction by the manufacturer's field representative based on the evaluation of the reinforced fill material selected by the contractor. Any such changes shall be documented in writing within 24 hours of the approved changes. This written document shall be sealed by the manufacturer's design engineer who is a licensed Professional Engineer in the Commonwealth of Kentucky. Details of the wedges or shims or other devices, such as clamps and external bracing used to achieve or maintain the wall batter, and the details for removal of temporary wedges or shims shall be as shown on the working drawings and/or accompanying construction manual. Permanent shims shall comply with the design life criteria, and shall maintain the design stress levels required for the walls.

(I) Bridge Abutment Design Considerations:

Shallow Bridge Foundations supported by MSE wall systems are not allowed. All bridge loads must be supported by deep foundations.

3.0 MATERIAL REQUIREMENTS:

The contractor shall furnish the Engineer with Certificates of Analysis documenting that all materials meet the requirements herein.

3.01 Precast Concrete Elements:

Precast concrete shall attain a minimum 28-day compressive strength of 4,000 psi unless a higher strength is specified by the wall supplier. The concrete shall be air entrained containing $5.5 \pm 1.5\%$ entrained air at the time the concrete is placed in the forms. A proposed mix design shall be submitted.

Prior to casting, all embedded components shall be set in place to the dimensions and tolerances designated in the plans and specifications. Wall aesthetics shall be in accordance with project plans, special notes, and/or other applicable contract documents.

(A) Concrete Testing and Inspection:

Precast concrete elements shall be subjected to compressive strength testing and inspected for dimensional tolerances and surface conditions. Panels delivered to the site without Department approval will be rejected.

(B) Casting:

Precast concrete face panels shall be cast on a horizontal surface with the front face of the panel at the bottom of the form. Connection hardware shall be set in the rear face. The concrete in each precast concrete panel shall be placed without interruption and shall be consolidated by deploying an approved vibrator, supplemented by such hand tamping as may be necessary to force the concrete into the corner of the forms, and to eliminate the formation of stone pockets or cleavage planes. Form release agents shall be used on all form faces for all casting operations.

The contractor shall advise the Engineer of the starting date for concrete panel casting at least <u>14</u> calendar days prior to beginning the operation if the casting operation is within the State, or <u>21</u> calendar days if the casting operation is outside the State.

(C) Finish:

(1) Non-Exposed Surfaces:

Rear faces of precast concrete panels shall be a face floated surface finish and screeded to eliminate open pockets of aggregate and surface distortions in excess of ¹/₄ inch.

(2) Exposed Surfaces:

The type of finish required on exposed surfaces shall be as shown in the plans.

(a) Exposed Aggregate Finish:

- (1) Prior to placing concrete, a set retardant shall be applied to the casting forms in accordance with the manufacturer's instructions.
- (2) After removal from the forms and after the concrete has set sufficiently to prevent its dislodging, the aggregate shall be exposed by a combination of brushing and

washing with clear water. The depth of exposure shall be between 3/8 inch and $\frac{1}{2}$ inch.

(3) An acrylic resin sealer consisting of 80 percent thinner and 20 percent acrylic solids by weight shall be applied to the exposed aggregate surface at a rate of one (1) gallon per 250 square feet.

(b) Concrete Panel Finish:

Concrete panel finish shall be in accordance with the plans and specifications. A sample of the proposed finish consisting of four full-sized panels shall be fabricated for inspection by the Engineer. Fabrication of the remaining panels is not authorized until the Engineer has inspected the sample panels an approved the finish as acceptable.

(D) Tolerances:

Connection device placement shall be within ± 1 inch of the dimensions shown on the drawings. Panel squareness as determined by the difference between the two diagonals shall not exceed $\frac{1}{2}$ inch.

(E) Identification and Markings:

The date of manufacture, the production lot number, and the piece mark shall be inscribed on a non-exposed surface of each element.

(F) Handling, Storage and Shipping:

All panels shall be handled, stored, and shipped in such a manner to eliminate the dangers of chipping, discoloration, cracks, fractures, and excessive bending stresses. Panels in storage shall be supported in firm blocking to protect panel connection devices and the exposed exterior finish. Storing and shipping shall be in accordance with the manufacturer's recommendations.

(G) Compressive Strength:

Precast concrete elements shall not be shipped or placed in the wall until a compressive strength of 3,400 pounds per square inch has been attained. The facing elements shall be cast on a flat and level area and shall be fully supported until a compressive strength of 1,000 pounds per square inch has been attained.

(H) **Precast Concrete Panel Joints:**

(1) General:

Where the wall wraps around an inside corner, a corner block panel shall be provided with flange extensions that will allow for differential movement without exposing the panel joints. The back face of vertical and horizontal joints shall be covered with geotextile filter. Joint filler, bearing pads, and geotextile filter shall be as recommended by the wall manufacturer and shall meet the requirements shown on the approved working drawings.

If required, as indicated on the plans, flexible open-cell polyurethane foam strips shall be used for filler for vertical joints between panels, and in horizontal joints where pads are used.

All joints between panels on the back side of the wall shall be covered with a Type IV geotextile fabric meeting the requirements of Section 843 of the current Standard Specifications. The minimum width shall be <u>one (1) foot</u>.

(2) Bearing Pads:

All horizontal and diagonal joints between panels shall include bearing pads. Bearing pads

shall meet or exceed the following material requirements:

- Preformed EPDM (Ethylene Propylene Diene Monomer) rubber pads conforming to ASTM D 2000 Grade 2, Type A, Class A with a Durometer Hardness of <u>70</u>.
- Preformed HDPE (High Density Polyethylene) pads with a minimum density of 0.946 grams per cubic centimeter in accordance with ASTM D 1505.

The stiffness (axial and lateral), size, and number of bearing pads shall be determined such that the final joint opening shall be $\frac{3}{4} \pm \frac{1}{8}$ inch unless otherwise shown on the plans. The MSE wall designer shall submit substantiating calculations verifying the stiffness (axial and lateral), size, and number of bearing pads assuming, as a minimum, a vertical loading at a given joint equal to 2 times the weight of facing panels directly above that level. As part of the substantiating calculations, the MSE wall designer shall submit results of certified laboratory tests in the form of vertical load-vertical strain and vertical load-lateral strain curves for the specific bearing pads proposed by the MSE wall designer. The vertical load-vertical strain curve should extend beyond the first yield point of the proposed bearing pad.

3.02 Steel Components:

(A) Galvanization:

Fill reinforcement steel shall be hot-dip galvanized in accordance with AASHTO M 111 (ASTM A123). Connection hardware steel can be galvanized by hot-dipping or other means, provided the method satisfies

the requirements of AASHTO M 111 (ASTM A123). A <u>minimum</u> galvanization coating of 2.0 oz/ft² (605 g/m²) or 3.4 mils (85 μ m) thickness is required. Fill reinforcement steel shall be adequately supported

while lifting and placing such that the galvanization remains intact. Steel members with damaged (peeled) galvanization shall be repaired according to ASTM A780 and as specified in approved working drawings, at no additional cost to the Department.

(B) Metallic Reinforcing Strips and Tie Strips:

Reinforcing strips shall be hot-rolled from bars to the required shape and dimensions. The strips' physical and mechanical properties shall conform to the requirements of ASTM A572, Grade 65 minimum. Tie strips shall be shop fabricated of hot-rolled steel conforming to the requirements of ASTM A1101, Grade 50 minimum. The minimum bending radius of the tie strips shall be ³/₈ inch. Galvanization shall be applied after the strips are fabricated, inclusive of punch holes for bolts as shown on approved drawings.

(C) Metallic Reinforcing Mesh:

Reinforcing mesh shall be shop fabricated of cold-drawn steel wire conforming to the requirements of AASHTO M 32, and shall be welded into the finished mesh fabric in accordance with AASHTO M 55.

Galvanization shall be applied after the mesh is fabricated. A minimum galvanization coating of 2.0 oz/ft²

 (605 g/m^2) or 3.4 mils (85 µm) thickness is required.

(D) Connector Pins:

Connector pins and mat bars shall be fabricated and connected to the fill reinforcement mats as shown in the approved working drawings. Connector bars shall be fabricated of cold drawn steel wire conforming to the requirements of AASHTO M 32.

(E) Welded Wire Fabric:

All welded wire fabric shall conform to the requirements of AASHTO M 32, AASHTO M 55, and the approved working drawings. Welded wire fabric shall be galvanized in conformance with the requirements of ASTM A123.

(F) Fasteners:

Connection hardware shall conform to the requirements shown in the approved working drawings. Connection hardware shall be cast in the precast concrete panels such that all connectors are in alignment and able to transfer full and even load to the fill reinforcement. Once the reinforcement is connected to the panel, the amount of slack shall not exceed ½ inch between the connector and the reinforcement during field installation. (If wedges are to be used to remove slack, the size, shape, and installation procedure with illustrations shall be included on the drawings and in the construction procedures.) Fasteners shall be galvanized and conform to the requirements of AASHTO M 164 or equivalent.

3.03 Geosynthetic Reinforcement:

Geosynthetic fill reinforcement is not allowed.

3.04 Certificate of Analysis for Fill Reinforcements:

For metallic wall reinforcement, a mill test report containing the ultimate tensile strength for the fill reinforcement shall be included in the certification. For metallic wall reinforcement, a mill test report containing the galvanization coverage shall be included in the certification. For metallic mesh wall reinforcement, a mill test report containing the ultimate weld strength for the fill reinforcement shall be included in the certification.

3.05 Reinforced Wall Fill Material:

Provide internally reinforced wall fill material consisting of <u>quarry-processed limestone</u> from a Department-approved quarry meeting all applicable general requirements of Section 805 of the Standard Specifications, current edition, and requirements herein. Provide material meeting the specific requirements for "Reinforced Fill Material" in Section 805 of the Standard Specifications, current edition, defined as "Non-Erodible" according to Section 805, and meeting all other requirements herein. Approval of the material source by the Department is required prior to beginning MSE wall construction.

(A) General:

Reinforced wall fill material shall be free of shale, organic matter, mica, gypsum, smectite, montmorillonite, or other soft poor durability particles. No salvaged material, such as asphaltic concrete millings or Portland Cement Concrete rubble, etc., will be allowed.

(B) Soundness and Shale:

The reinforced fill material shall have a soundness loss of 30 percent or less when tested in accordance with AASHTO T104 using a magnesium sulfate solution with a test duration of four cycles. Alternatively, the material shall have a soundness loss of 15 percent or less when tested in accordance with AASHTO T104 using a sodium sulfate solution with a test duration of five cycles. A maximum of 2.0% shale is permitted as determined by KM 64-604.

(C) Gradation:

Gradations will be determined per AASTHO T27 and shall be in accordance with Table 2, unless otherwise specified.

Table 2 REINFORCED FILL GRADATION REQUIREMENTS		
Sieve Size	Percent Passing	
4 inch	100	
2 inch	40 - 90	
No. 4	0 - 10	
No. 200	0-5	
This is the same gradation as required in Section 805.11 of the Standard Specifications except		
the requirement for the 2 inch sieve has been added.		
Size # 23 in the Standard Specifications falls within these gradation limits.		

(D) Internal Friction Angle Requirement:

The reinforced wall fill material shall exhibit an effective (drained) angle of internal friction of not less than 34 degrees, as determined by performing a Direct Shear Test in accordance with AASHTO T236 or ASTM D3080 A minimum of three (3) points (i.e. three normal stresses) is required to constitute a complete test.

The direct shear test shall be performed on the portion finer than the 1-inch sieve. <u>In order to comply with</u> the test method, a minimum 12-inch diameter circular box or minimum 12-inch square box is required. The sample shall be compacted directly in the shear device at the saturated surface dry (SSD) condition and in general accordance with the rodding procedure in AASHTO T-19.

(E) Electrochemical Requirements:

The reinforced wall fill material shall meet the electrochemical requirements of Table 3.

Table 3 ELECTROCHEMICAL REQUIREMENTS FOR METALLIC REINFORCEMENTS		
Characteristic	Requirement	Test Method
Resistivity	> 3,000 ohm-cm	AASHTO T-288
pH	5.0 to 10.0	AASHTO T-289
Chlorides	< 200 ppm	ASTM D4327
Sulfates	< 1000 ppm	ASTM D4327
Organic Content	< 1.0 %	AASHTO T-267
* If the resistivity is greater or equal to 5 000 abm am the ablaride and sulfate requirements may be weived		

^{*} If the resistivity is greater or equal to 5,000 ohm-cm, the chloride and sulfate requirements may be waived.

Table 4 – VACANT

(F) Saturated Surface Dry (SSD) Bulk Density:

The Bulk Density of the Reinforced Fill Material shall be obtained in accordance with AASHTO T19. The Bulk Density at the oven-dry condition shall then be corrected using the Absorption determined according to AASHTO T-85 to determine the SSD Bulk Density, which shall be within +/- 5.0 pcf of the design total unit weight of MSE reinforced fill material or the design shall be adjusted. (See Table 1.)

(G) Limits of Reinforced Wall Fill Material:

The reinforced fill material shall extend to <u>at least one (1) foot beyond the free end of the reinforcement</u>. If applicable, back-to-back walls wherein the free ends of the reinforcement of the two walls are spaced apart less than or equal to one-half the design height of the taller wall, reinforced wall fill material shall be used for the space between the free ends of the reinforcements as well. The design height of the wall is defined as the difference in elevation between finished grade at top of wall and the top of leveling pad. The top of the leveling pad shall always be below the minimum embedment reference line as indicated on the plans for the location under consideration.

3.06 Granular Embankment for Foundation and Retained Backfill:

Provide granular foundation material and granular external retained backfill consisting of "Granular Embankment" meeting the material requirements of Section 805 in the current edition of the Standard Specifications and defined as "Non-Erodible" according to Section 805. If required by design, the extent of the granular foundation material and granular external retained backfill shall be shown in the Geotechnical Notes. Contrary to the Standard Specifications, no natural sand is permitted. Also contrary to the Standard Specifications, the maximum size limit for "Granular Embankment" is 4 inches where shown in the Geotechnical Sheets. Approval of the material source by the Department is required prior to beginning placement of this material.

3.07 Sampling & Testing of Reinforced Wall Fill and Granular Embankment Materials

(A) **Reinforced Wall Fill:**

To obtain source approval, the contractor shall furnish the Engineer with an 80-pound representative sample of the reinforced wall fill material and a Certificate of Analysis containing results of all tests referenced in Table 5 <u>at least four weeks prior to beginning construction of the MSE wall</u>.

During construction, the reinforced fill material shall be sampled and tested by the Engineer for acceptance and quality control testing. A new sample and Certificate of Analysis shall be provided any time the material and/or source changes.

Table 5 - Sampling Frequency for Kennorced wan Fin Material		
Function	Tests	Frequency

Table 5 Compling Engeneration Deinforged Wall Fill Meterial

Source Approval	Soundness (AASHTO T104)* % Shale (KM 64-604)*	At least four (4) weeks prior to beginning MSE wall construction and once per material change and/or change
Testing by Contractor and/or its Consultant(s)	Gradation (AASHTO T27)* Direct Shear (AASHTO T236 or ASTM D3080)* Organic Content (AASHTO T267)* SSD Bulk Density (AASHTO T19 & T85)* Resistivity (AASHTO T288)**	in source. Except for Direct Shear, one test is valid for up to 10,000 ft ² of MSE wall area if there is no material change or change in source. ****
	pH (AASHTO T289)** Chlorides and Sulfates (ASTM D4327)**	Generally, only one Direct Shear test is required unless there is a change in material, source, or gradation.
Acceptance and Quality Control Testing by Department	Gradation (AASHTO T27) % Shale (KM 64-304) At the discretion of the Engineer.	One per 2,000 cubic yards at job site. (A change of more than $+/-5.0$ percent passing any sieve size <u>will</u> require additional SSD Bulk Density testing and <u>may</u> require additional Direct Shear testing, both by the Contractor.)
	Any other applicable requirements of Section 805 of the current Standard Specifications	As required by the current Materials Field Sampling and Testing Manual, Standard Specifications, and/or other Department policy.

* The laboratory performing these tests must be accredited by the AASHTO Materials Reference Laboratory (AMRL) for the tests they perform. AMRL accreditation for AASHTO T104 & T27 is required to perform KM 64-604.

** Although accreditation for the specific test methods may not be available, the laboratory performing these tests must be accredited or certified by one of the organizations below. A laboratory's accreditation or certification status does not relieve the laboratory of its responsibility to perform the tests in accordance with the specified methods.

- AMRL Soil and/or Aggregate (Resistivity and pH only)
- American Association for Laboratory Accreditation (A2LA) Chemical and/or Environmental
- Kentucky Division of Water Drinking Water Chemical Analyses

The Contractor may consult the Geotechnical Branch to ensure that a lab is accredited or certified.

**** e.g. 1 to 10,000 ft² of wall requires 1 test, 10,001 to 20,000 ft² requires 2 tests, etc.

(B) Granular Embankment Material for Foundation and Retained Backfill:

To obtain source approval, the contractor shall furnish the Engineer with an 80-pound representative sample of the Granular Embankment material and a Certificate of Analysis at least four weeks prior to beginning Granular Embankment construction.

Table 6 Sampling Frequency for Granular Embankment for Foundation and Retained Backfill		
Function	Frequency	
Source Approval	At least four weeks prior to beginning granular embankment construction and once per material change and/or change in source.	
Acceptance and Quality Control	In accordance with standard procedures for "Granular Embankment".	

3.08 Cast-in-Place Concrete:

Cast-in-place concrete shall be Class A, except that the leveling pads shall be Class B, both in accordance with the current Standard Specifications.

Special Note for Retaining Walls

3.09 Modular Block (Segmental) Facing Units:

This section covers dry-cast hollow and solid concrete masonry structural retaining wall units, machine made from Portland cement, water, and suitable mineral aggregates. The units are intended for use as facing units in the construction of mortarless, modular block walls (MBW) also known as segmental retaining walls (SRW). Metallic reinforcement specified in Section 3.02 shall be used as reinforcement in the reinforced (structure) wall fill zone.

(A) Casting:

Cementitious material in the modular block facing unit shall be Portland cement conforming to the requirements of ASTM C 150. If fly ash is used it shall not exceed 20% by weight of the total cement content and shall conform to ASTM C 618. Aggregates used in concrete blocks shall conform to ASTM C 33 for normal weight concrete aggregate. Efflorescence control agent shall be used in concrete mix design to prevent efflorescence on the block.

The contractor shall advise the Engineer of the starting date for concrete panel casting at least 14 calendar days prior to beginning the operation if the casting operation is within the State, or 21 calendar days if the casting operation is outside the State.

(B) Physical Requirements:

At the time of delivery to the work site, the modular block facing units shall conform to the following physical requirements:

- 1) Minimum required compressive strength of 4,000 psi (average 3 coupons)
- 2) Minimum required compressive strength of 3,500 psi (individual coupon)
- 3) Minimum oven dry unit weight of 125 pcf
- 4) Maximum water absorption of 5 % after 24 hours
- 5) Maximum number of blocks per lot of 2,000. Tests on blocks shall be submitted at the frequency of one set per lot.

Acceptance of the concrete block, with respect to compressive strength, water absorption and unit weight, will be determined on a lot basis. The lot shall be randomly sampled and tested in accordance with ASTM C140. As no additional expense to the Department, the manufacturer shall perform the tests at a Department approved laboratory and submit the results to the Engineer for approval. Compressive strength test specimens shall be cored or shall conform to the saw-cut coupon provisions of ASTM C 140. Block lots represented by test coupons that do not reach an average compressive strength of 4,000 psi will be rejected.

(C) Freeze-Thaw Durability:

In areas where repeated freezing and thawing under saturated conditions occur, the units shall be tested to demonstrate freeze-thaw durability in accordance with Test Method ASTM C1262. Freeze thaw durability shall be based on tests from five specimens made with the same materials, concrete mix design, manufacturing process, and curing method, conducted not more than 18 months prior to delivery. Specimens used for absorption testing shall not subsequently be used for freeze-thaw testing. Specimens shall comply with either or both of the following acceptance criteria depending on the severity of the project location as determined by the Department:

- 1) The weight loss of four out of five specimens at the conclusion of 150 cycles shall not exceed 1% of its initial weight when tested in water.
- 2) The weight loss of each of four out of the five test specimens at the conclusion of 50 cycles

shall not exceed 1.5% of its initial mass when tested in a saline (3% sodium chloride by weight) solution.

(D) Tolerances for Modular Block Dimensions:

Modular blocks shall be manufactured within the following tolerances:

- 1) The length and width of each individual block shall be within $\pm 1/8$ inch of the specified dimension. Hollow units shall have a minimum wall thickness of $1\frac{1}{4}$ inches.
- 2) The height of each individual block shall be within $\pm 1/16$ inch of the specified dimension.
- 3) When a broken (split) face finish is required, the dimension of the front face shall be within \pm 1.0 inch of the theoretical dimension of the unit.

(E) Finish and Appearance:

Units that indicate imperfect molding, honeycomb or open texture concrete and color variation on front face of block due to excess form oil or other reasons shall be rejected. All units shall be visually efflorescence free. All units shall be sound and free of cracks or other defects that would interfere with the proper placing of the unit or significantly impair the strength or permanence of the construction. Minor cracks (e.g. no greater than 1/50 inch in width and no longer than 25% of the unit height) incidental to the usual method of manufacture or minor chipping resulting from shipment and delivery, are not grounds for rejection.

The exposed faces shall be free of chips, cracks or other imperfections when viewed from a distance of 30 feet under diffused lighting. Up to five (5) percent of a shipment may contain slight cracks or small chips not larger than 1.0 inch.

Color and finish shall be as shown on the plans and shall be erected with a running bond configuration.

(F) Pins:

If pins are required to align modular block facing units, they shall consist of a non-degrading polymer or hot-dipped galvanized steel and be made for the express use with the modular block units supplied. Connecting pins supporting the reinforcement shall be hot-dipped galvanized steel and be capable of holding the reinforcement in the proper design position during backfilling.

(G) Cap Units and Adhesive:

The cap unit connection to the block unit immediately under it shall be of a positive interlocking type and not frictional. Cap units shall be cast to or attached to the top of modular block facing units in strict accordance with the requirements of the manufacturer of the blocks and the adhesive. The surface of the block units under the cap units shall be clear of all debris and standing water before the approved adhesive is placed. Contractor shall provide a written 10-year warranty, acceptable to Owner, that the integrity of the materials used to attach the cap blocks will preclude separation and displacement of the cap blocks for the warranty period.

(H) Unit (Core) Fill:

Unit (core) fill is defined as free-draining, coarse grained material that is placed within the empty cores of the modular block facing units. Unit (core) fill shall be a well graded crushed stone or granular fill meeting the gradation shown in Table 7. Gradation for unit fill shall be tested at the frequency of 1 test per 50 yd³ at the job site and for every change in the material source.

Table 7

Gradation for Unit (Core) I'm		
U.S. Sieve Size	Percent Passing	
1 ¹ / ₂ -inch	100	
1-inch	75-100	
³ /4-inch	50-75	
No. 4	0-60	
No. 40	0-50	
No. 200	0-5	

Gradation for Unit (Core) Fill

3.10 Certificate of Analysis for Modular Block Connection:

For modular block facing units, a certification shall be provided with detailed calculations according to AASHTO and the results of laboratory test results performed in accordance with Section C.3 in Appendix B of FHWA NHI-10-025, dated 2009 ("Mechanically Stabilized Earth Walls and Reinforced Soil Slopes – Volume II"). Such certification shall demonstrate that all connections, including block-to-reinforcement and block-to-block connections, and all related components meet or exceed the current AASHTO 100 year design life requirements and are capable of resisting 100% of the maximum tension in the soil reinforcements at any level within the wall. Long-term connection testing for extensible reinforcements is also required. The effect of wall batter and normal pressures representative of the full range of wall configurations and heights shall be incorporated in the tests.

4.0 CONSTRUCTION REQUIREMENTS:

Construction of MSE walls may be subject to special requirements as specified in the Geotechnical Report and Geotechnical MSE Wall Note Sheets developed by the Design Build Team. These requirements may include but are not limited to: monitoring devices (refer to section 4.5), phased panel and reinforced fill construction, waiting period intervals and foundation modification.

4.01 Excavation:

The contractor shall ensure that temporary slopes are safe during the period of wall construction, and shall adhere to all applicable local, state and federal regulations. During construction of the MSE walls, the contractor shall design, construct, maintain and, when called for, remove temporary excavation support systems (shoring). Temporary excavation support systems may be left in place if approved by the Engineer. The back slope of the excavation shall be benched. Where shoring is required, the contractor shall submit the shoring design, and a plan outlining construction and removal procedures, to the Engineer for review and approval prior to proceeding with the work. Shoring plans shall be prepared and submitted as part of the working drawings and shall bear the seal and signature of a licensed Professional Engineer in the Commonwealth of Kentucky. All shoring design shall include appropriate input and review by a geotechnical engineer.

4.02 Foundation Preparation:

(A) General:

If required, specific ground improvement requirements shall be outlined in the Geotechnical Report and the Geotechnical Note Sheets.

In general the following applies:

The foundation for the reinforced wall fill and retained backfill shall be graded level for the entire area

Special Note for Retaining Walls

of the base of such backfills, plus an additional 12 inches on all sides, or to the limits shown in the plans. If soil reinforcement components are to be positioned on native soil, the top one (1) foot of native soil shall meet the requirements of the reinforced backfill material specified in Subsection 3.05.

Foundation replacement material shall consist of "Granular Embankment" meeting the requirements of Section 3.06 herein. The material shall be compacted in accordance with Section 206 of the current Standard Specifications except that the maximum loose lift thickness (prior to compaction) is 12 inches. Type IV Geotextile Fabric shall be placed between the existing embankment material and the proposed "Granular Embankment" in accordance with Sections 214 and 843 of the Standard Specifications.

(B) **Proof-Rolling:**

The contractor shall perform proof-rolling to evaluate the stability and uniformity of the subgrades on which the MSE structure will be constructed. Proof rolling shall be performed on the entire areas at the following locations:

- 1) At the bottom of the overexcavation and recompaction zones.
- 2) At the bottom of the overexcavation and replacement zones.
- 3) At the base of all walls.
- 4) At the top of native soil layers and/or existing fill material that has been scarified, moistureconditioned, and recompacted (if different from the bottom of the overexcavation and recompaction zones, or overexcavation and replacement zones).

Proof-rolling shall be done immediately after subgrade compaction while the moisture content of the subgrade soil is near optimum, or at the moisture content that was used to achieve the required compaction. Proof-rolling shall be performed again within one day prior to beginning MSE Wall construction.

If proof-rolling is performed after installation of pipe underdrains, the proof-roller shall not be used within $1\frac{1}{2}$ feet of the underdrains.

Proof-rolling shall be performed with a pneumatic-tired tandem axle roller with at least three wheels on each axle, a gross weight of <u>25 tons (50,000 pounds)</u>, a minimum tire pressure of <u>75 pounds per square</u> inch, and a minimum rolling width of <u>75 inches</u>. A Caterpillar PS-300B (or PF-300B), Ingersoll-Rand PT-240R, BOMAG BW24R, Dynapac CP271, or equipment with equivalent capabilities shall be used for proof-rolling.

Proof-rolling equipment shall be operated at a speed between 1.5 and 3 miles per hour, or slower as required by the Engineer to permit measurements and/or observations of the deformations, ruts and/or pumping.

Proof-rolling shall be carried out in two directions at right angles to each other with no more than <u>24</u> <u>inches</u> between tire tracks of adjacent passes. The contractor shall operate the proof-roller in a pattern that readily allows for the recording of deformation data and complete coverage of the subgrade. The following actions shall be taken based on the results of the proof-rolling activity:

- 1) Rutting (i.e. deformation that does not rebound) less than $\frac{1}{4}$ -inch The grade is acceptable.
- 2) Rutting greater than $\frac{1}{4}$ -inch and less than $\frac{1}{2}$ inches The grade shall be scarified and re-compacted.
- 3) Rutting greater than $1\frac{1}{2}$ inches The compacted area shall be removed and reconstructed.
- 4) Pumping (i.e. deformation that rebounds, or materials that are squeezed out of a wheel's path) greater than one (1) inch The area shall be remediated as directed by the Engineer.

The contractor shall be responsible for maintaining the condition of the approved proof-rolled soils throughout the duration of the retaining wall construction. Wall construction shall not commence until the foundation subgrade has been approved by the Engineer.

4.03 Concrete Leveling Pad:

Leveling pads shall be constructed of unreinforced Class B concrete meeting the requirements of Section 601 of the current Standard Specifications as shown on the working drawings. Gravel leveling pads shall not be allowed. The elevation of the top of leveling pad shall be within ¹/₈ inch from the design elevation when measured by a straightedge over any 10-foot run of the leveling pad.

The minimum width of the leveling pad shall be the width of the facing unit plus <u>8-inches</u>. The centerline of the leveling pad shall be within <u>1</u> inch from design location. When the facing units are centered on the leveling pad, the leveling pad shall extend approximately 4-inches beyond the limits of the facing unit as measured in the direction perpendicular to the face of the wall.

Cast-in-place leveling pads shall be cured for a minimum of 48 hours before placement of wall facing units. A geotextile shall be applied over the back of the area of any openings greater than ¹/₄ inch between the facing units and leveling pad steps. The geotextile shall extend a minimum of six (6) inches beyond the edges of the opening. The opening shall be filled with Class B concrete, <u>or shall be concurrently backfilled on both sides with soil.</u>

4.04 Subsurface Drainage:

Prior to wall erection, the contractor shall install a subsurface drainage system as shown on the working drawings.

4.05 Wall Erection:

(A) General:

Walls shall be erected in accordance with the approved manufacturer's written construction procedures. The contractor shall be responsible for ensuring that a field representative from the manufacturer is available at the site during construction of the <u>initial 10-foot height of the full length of wall for each wall system. Additionally the representative shall be present for the initial 10-foot height of the full length of wall for each wall system as constructed by each additional contractor, and as called upon thereafter by the Engineer, to assist the contractor and Engineer at no additional cost to the Department. All temporary construction aids (e.g., wedges, clamps, etc.) shall be in accordance with the manufacturer's recommendations.</u>

(B) Placement Tolerances for Walls with Precast Facing:

For walls with rigid facing, such as precast concrete panels, the panels shall be placed such that their final position is vertical or battered as shown on the working drawings. As wall fill material is placed, the panels shall be maintained in the correct vertical alignment by means of temporary wedges, clamps, or bracing as recommended by the manufacturer. A minimum of two, but not more than three, rows of panel wedges shall remain in place at all times during wall erection. Wedges shall be removed from lower rows as panel erection progresses, so as to prevent chipping or cracking of concrete panels. The contractor shall repair any damage to erected concrete panels as directed by the Engineer and to the Engineer's satisfaction. No external wedges in front of the wall shall remain in place when the wall is complete.

Erection of walls with panel facing shall be in accordance with the following tolerances:

- Vertical and horizontal alignment of the wall face shall not vary by more than $\frac{3}{4}$ inch when measured along a <u>10-foot</u> straightedge.
- The overall vertical tolerance (plumbness) of the finished wall shall not exceed $\frac{1}{2}$ inch per 10 feet of wall height. Negative (outward leaning) batter is not acceptable.
- The maximum permissible out of plane offset at any panel joint shall not exceed <u>3/8 inch</u>.
- The final horizontal and vertical joint gaps between adjacent facing panel units shall be within <u>1/8 inch and ¹/4 inch</u>, respectively, of the design final joint opening per the approved

calculations required in Subsection 3.01(H).

Wall sections not conforming to these tolerances shall be reconstructed at no additional cost to the Department.

(C) Placement Tolerances for Permanent Walls with Flexible Facing:

Permanent Flexible Facing is not allowed.

(D) Placement Tolerances for Modular Block Units:

Erection of walls with Modular Block Units shall be as per the following requirements:

- Vertical and horizontal alignment of the wall face shall not vary by more than ³/₄-inch when measured along a 10-feet straightedge.
- Overall vertical tolerance (plumbness) of the wall shall not exceed 1¹/₄-inch per 10-ft of wall height from the final wall batter. Negative (outward leaning) batter is not acceptable.
- The first row of units shall be level from unit-to-unit and from front-to-back. Use the tail of the units for alignment and measurement.
- All units shall be laid snugly together and parallel to the straight or curved line of the wall face.
- Unless otherwise noted, all blocks shall be dry-stacked and placed with each block evenly spanning the joint in the row below (running bond). Shimming or grinding shall control the elevations of any two adjacent blocks within 1/16 inch.
- The top of blocks shall be checked with a minimum length of 3-feet long straight edge bubble level. Any high points identified by the straight edge shall be ground flat. Block front to back tilting shall be checked frequently, however correction by shimming shall be done no later than 3 completed courses.
- Wall sections not conforming to these tolerances shall be reconstructed at no additional cost to the Department.

(E) Placement of Metallic Reinforcement Elements:

Metallic reinforcement elements shall be placed normal (perpendicular) to the face of the wall, unless otherwise shown on the approved plans. All reinforcement shall be structurally connected to the wall face.

At each level of the reinforcement, the reinforced wall fill material shall be roughly leveled and compacted before placing the next layer of reinforcement. The reinforcement shall bear uniformly on the compacted reinforced fill from the connection to the wall to the free end of the reinforcing elements. The reinforcement placement elevation shall be at the connection elevation to two (2) inches higher than the connection elevation.

Where overlapping of reinforcing may occur, such as at corners, reinforcing connections to panels shall be adjusted to maintain at least three (3) inches of vertical separation between overlapping reinforcement.

(F) Placement of Geotextile:

All joints between precast concrete panels shall be covered with geotextile on the backside of the wall. Adhesive shall be applied to panels only. Adhesive shall not be applied to geotextile fabric or within <u>two</u> (2) inches of a joint. The contractor shall provide geotextile having a minimum width of 12 inches, and shall overlap fabric a minimum of <u>four (4) inches</u>. If applicable, the placement of the geotextile fabric for

modular block walls shall be in accordance with the plans.

(G) Joint Pads and Fillers:

The contractor shall install joint pads and fillers as shown on the working drawings.

(H) Placement of Geosynthetic Reinforcement:

Geosynthetic reinforcement is not allowed.

4.06 Reinforced Wall Fill Placement:

(A) General:

Reinforced wall fill material shall be compacted using a static-weighted or vibratory roller. Sheeps-foot or grid-type rollers shall not be used for compacting material within the limits of the fill reinforcement. Compaction within three (3) feet of the wall facing shall be achieved by a lightweight mechanical tamper or roller system.

Reinforced wall fill placement shall closely follow erection of each course of facing panels. Reinforced fill material shall be placed in such a manner to avoid damage or disturbance of the wall materials, misalignment of facing panels, or damage to fill reinforcement or facing members. The contractor shall place fill material to the level of the connection and in such a manner as to ensure that no voids exist directly beneath reinforcing elements.

If applicable, the fill material for walls with modular block facing units shall not be advanced more than the height of a modular block unit until the drainage fill, core fill and all fill in all openings within the blocks at that level have been placed. The filled units shall be swept clean of all debris before installing the next level of units and/or placing the geogrid materials

The maximum compacted lift thickness shall not exceed <u>eight (8) inches</u>. The contractor shall decrease this lift thickness, if necessary, to obtain the specified density.

For metallic reinforcements, the fill shall be spread by moving the machinery parallel to or away from the wall facing and in such a manner that the steel reinforcement remains normal to the face of the wall. Construction equipment shall not operate directly on the steel reinforcement. A minimum fill thickness of three (3) inches over the steel reinforcement shall be required prior to operation of vehicles. Sudden braking and sharp turning shall be avoided.

Wall materials which are damaged during reinforced fill material placement shall be removed and replaced by the contractor, at no additional cost to the Department. The contractor may submit alternative corrective procedures to the Engineer for consideration. Proposed alternative corrective procedures shall have the concurrence of the MSE wall supplier and designer, in writing, prior to submission to the Engineer for consideration. All corrective actions shall be at no additional cost to the Department.

(B) Compaction Criteria:

<u>Trial fill sections shall be constructed</u> with Department personnel present to determine appropriate criteria to achieve adequate compaction. The trial fill sections shall be performed as follows:

- One trial fill section is valid for up to 10,000 ft² of MSE wall area (e.g. 1 to 10,000 ft² of wall requires 1 trial fill section, 10,001 to 20,000 ft² requires 2, etc.) and for no more than one individual MSE wall.
- The minimum dimensions of the test pad shall be 15 ft. wide by 50 ft. long.

- The lift thickness shall not exceed <u>eight (8) inches after compaction.</u>
- Compaction shall be determined by using a level to measure the settlement of the trial section at a number of points after each pass (e.g., a minimum of 5 points measured at the center of a 1 ft square metal plate or other method approved by the Engineer).
- A thickness of approximately 2.5 feet shall be constructed to determine the appropriate number of passes, which will maximize compaction without excessively crushing the rock at the surface.
- The number of passes to achieve at least 80 percent of the maximum settlement will be required for production work.
- Only those methods used to establish compaction compliance in the trial fill section shall be used for production work.
- A material change, change in source, a difference of more than +/- 5.0 percent passing any sieve size, and/or change in the approved equipment shall require the contractor to conduct a new trial fill section and obtain re-approval by the Engineer of the minimum number of passes and rolling pattern.
- The Department reserves the right to use other test methods to evaluate the adequacy of the compaction criteria.
- The trial fill sections are incidental to the bid price for Retaining Wall.

Within three (3) feet of the wall facing, compaction criteria shall be determined using test pad sections with Department personnel present to determine appropriate criteria to achieve adequate compaction. The test pad sections shall be performed as follows:

- The minimum dimensions of the test pad shall be 5 ft. wide by 15 ft. long.
- The lift thickness shall not exceed <u>eight (8) inches after compaction.</u>
- Compaction shall be determined by using a level to measure the settlement of the test pad section at a number of points after each pass (e.g., a minimum of 3 points measured at the center of a 1 ft square plate or other method approved by the Engineer).
- A thickness of approximately 2.5 feet shall be constructed to determine the minimum number of passes of a lightweight mechanical tamper or roller system.
- The number of passes to achieve at least 80 percent of the maximum settlement will be required for production work.
- Only those methods used to establish compaction compliance in the test pad section shall be used for production work.
- A material change, change in source, a difference of more than +/- 5.0 percent passing any sieve size, and/or change in the approved equipment shall require the contractor to conduct a new test pad section.
- The test pad sections are incidental to the bid price for Retaining Wall.

(C) Moisture Control:

The free moisture content of the reinforced fill material, as determined by KM 64-306, shall not exceed 2.0% during compaction.

(D) Protection of the Work:

The contractor shall not allow surface runoff from adjacent areas to enter the wall construction site at any time during construction operations. In addition, at the end of each day's operation, the contractor shall slope the last lift of fill material away from the wall facing so that runoff is directed away from the structure. If the subgrade is damaged due to water or otherwise, such that it does not meet the requirements of Subsection 4.02, then as directed by the Engineer, the contractor shall rework and repair the damaged

Special Note for Retaining Walls

subgrade at no additional expense to the Department. The criteria in Subsection 4.02 shall be used to judge the adequacy of the repair. Rework and repair shall extend to a depth where undamaged work is encountered.

4.07 Retained Backfill Placement:

As required by the Geotechnical Report and plan notes the retained backfill (i.e. external backfill outside of the reinforced volume) may consist of either soil or "Granular Embankment" meeting the requirements of Section 3.06 herein. The material shall be compacted in accordance with Section 206 of the current Standard Specifications except that the maximum loose lift thickness (prior to compaction) is 12 inches. Type IV Geotextile Fabric shall be placed between the existing embankment material and the proposed "Granular Embankment" in accordance with Sections 214 and 843 of the Standard Specifications.

4.5 MONITORING:

4.51 Monitoring Devices:

The Geotechnical Report may require devices to monitor vertical and horizontal displacement both during and after construction. The Contractor will be responsible for providing labor and materials and for cooperating with, and providing, any required assistance to Department personnel with implementation of monitoring activities. The cost of all labor and materials required to support the monitoring program will be incidental to the cost of the.

The approximate locations of any monitoring devices shall be shown in the Working Drawings prepared by the MSE Wall Designer.

4.52 Monitoring Schedule:

The monitoring schedule for any required monitoring device shall be as agreed upon in the Geotechnical Report for the structure.

5.0 METHOD OF MEASUREMENT:

5.01 MSE Retaining Wall:

Mechanically Stabilized Earth (MSE) retaining walls will be measured by the square foot of Retaining Wall. The vertical height will be taken as the difference in elevation measured from the top of wall to the top of the leveling pad. No field measurement will be made. The final quantity will be the contract plan quantity increased or decreased by authorized changes.

The MSE Wall supplier's design may require additional excavation and MSE Wall materials to satisfy their design. The design MSE earth reinforcement lengths shall be equal to or greater than the length shown on the plans or as required by the AASHTO Specifications for the height of the wall plus live load surcharge. The lengths of the MSE Reinforcement shall be constant from the bottom to the top of the section. Extension of the plan limits to accommodate the wall design, configuration of pre-fabricated concrete units, or lengths of earth reinforcement for MSE Walls shall not be cause for changing the plan pay quantities. Additional quantities of excavation, MSE Reinforcement, MSE volume, excavation for foundation replacement, granular embankment, and labor necessary to satisfy the MSE Wall supplier's design shall be incidental to the Retaining Wall.

The MSE volume that extends twelve inches, minimum, beyond the ends of the reinforced volume for MSE Walls shall be incidental to the Retaining Wall.

All work associated with providing the design, details and construction for the coping, moment slab, barrier and pre-cast aesthetic panel shall be incidental to the Retaining Wall.

All materials, equipment, and labor necessary to provide and install the <u>geotextile fabric immediately</u> <u>surrounding the reinforced fill volume</u> shall be incidental to the Retaining Wall.

5.02 Embankment:

The quantity of embankment for external retained backfill behind the MSE Walls and, if required, granular foundation beneath the walls shall be measured according to Section 206 of the current Standard Specifications. The final quantities shall be based on field measurements.

5.03 Geotextile Fabric:

All materials, equipment, and labor necessary to provide and install the <u>geotextile fabric placed between</u> <u>existing fill material and Granular Embankment</u> shall be measured according to Section 214 of the current Standard Specifications. The final quantities shall be based on field measurements.

Appendix: